
Coin Sampling: Gradient-Based Bayesian
Inference without Learning Rates

Louis Sharrock, Christopher Nemeth

1. Introduction
Motivation

• Sampling from an unnormalised probability distribution π(dx) on Rd,
with density

π(x) ∝ e−U(x) ,

is a central problem in computational statistics and machine learning.
• Many existing methods such as Langevin Monte Carlo (LMC) and Stein

variational gradient descent (SVGD) [1] depend on a learning rate γ, which
must be carefully tuned to ensure convergence to the target distribution π
at a suitable rate.

Contributions

• We introduce coin sampling , a general framework for gradient-based
Bayesian inference which is entirely learning-rate free .

• We propose coin sampling analogues of several existing particle-based
sampling algorithms, including Stein variational gradient descent (SVGD),
kernel Stein discrepancy descent (KSDD) [2], and Laplacian adjusted
Wasserstein gradient descent (LAWGD) [3].

• We illustrate the performance of our approach on a range of numerical
examples. Our method achieves comparable performance to existing
particle-based sampling algorithms with no need to tune a learning rate.

2. Background: Parameter-Free Optimisation
Suppose we were interested in solving the optimisation problem

x∗ = argmin
x∈Rd

f(x).

In [4], Orabona and Pal introduced a parameter-free method for solving this
optimisation problem based on coin betting.

• Consider a gambler who bets on a series of coin flips.
• The gambler starts with initial wealth w0 > 0, and bets on the outcomes of

coin flips ct ∈ {−1, 1}, where +1 denotes heads and −1 denotes tails.
• The gambler bets xt ∈ R, where sign(xt) ∈ {−1, 1} denotes whether the

bet is on heads or tails, and |xt| ∈ R denotes the size of the bet.
• The wealth wt of the gambler thus accumulates as

wt = w0 +

t∑
s=1

csxs.

• We will assume the gambler’s bets satisfy xt = βtwt−1, where βt ∈ [−1, 1]

is a betting fraction, given by βt = t−1
∑t−1

s=1 cs.
• The sequence of bets made by the gambler is thus given by

xt =

∑t−1
s=1 cs
t

(
w0 +

t−1∑
s=1

csxs

)
.

• Remarkably, if we consider a betting game in which ct = −∇f(xt), then
the average of the bets 1

T

∑T
t=1 xt converges to x∗ = argminx∈Rd f(x) at a

rate determined by the betting strategy [4].
• Moreover, this approach is completely learning-rate free!

3. Sampling as Optimisation
To extend the coin betting framework to our setting, we will leverage the view of
sampling as an optimisation problem on the space of probability measures:

π = argmin
µ∈P2(Rd)

F(µ) ,

where F : P(Rd) → R is a dissimilarity functional uniquely minimised at π. A
natural solution to this problem is to simulate a discretisation of the Wasserstein
gradient flow of F over (P2(Rd,W2), namely,

∂tµt +∇ · (vtµt) = 0, vt = −∇W2
F(µt),

where ∇W2
F(µ) denotes the Wasserstein gradient of F at µ.

4. Coin Sampling
We take a different approach, based on coin betting:

• Consider a gambler with initial wealth w0 > 0. We suppose the gambler
bets xt−x0 on outcomes ct ∈ [−L,L], where x0 ∼ µ0 for some µ0 ∈ P2(Rd).
We assume the bets satisfy xt − x0 = βtwt−1, and that βt =

1
Lt

∑t−1
s=1 cs.

• Let φt : Rd → Rd denote the functions which map φt : x0 7→ xt. We can
then define a sequence of measures via µt = (φt)#µ0, so that xt ∼ µt.

• Inspired by [4], and the view of sampling as optimisation, we will consider
a betting game with ct = − 1

L∇W2
F(µt)(xt). The gambler’s bets are thus

xt − x0 = −
∑t−1

s=1 ∇W2
F(µs)(xs)

Lt
(w0 −

1

L

t−1∑
s=1

⟨∇W2
F(µs)(xs), xs − x0⟩) .

• In this case, under certain conditions, it is possible to show that
F(1

T

∑T
t=1 µt) → F(π), where µt = Law(xt).

The updates above depend on the unknown measures (µt)t∈N, so in practice we
will use a particle-based approximation. For different choices of F and different
approximations of ∇W2

F(µ), this results in learning-rate free analogues of
several existing particle-based algorithms (e.g., SVGD, KSDD, LAWGD).

Coin SVGD . Inspired by SVGD [1], suppose we let F(µ) = KL(µ||π), and
that we replace ∇W2

F(µ) by Pµ∇W2
F(µ), where Pµ is the integral operator

Pµf(x) =
∫
k(x, y)f(y)dy. Integrating by parts, we then have

Pµ∇W2F(µs)(x) := Pµ∇ log
(µs

π

)
(x) =

∫
[k(x, y)∇U(y)−∇2k(x, y)]µs(dy),

which we can easily approximate using samples xi
s ∼ µs. This suggests the

following particle-based approximation. Let (xi
0)

N
i=1 ∼ µ0, and (wi

0)
N
i=1 ∈ R+.

Then, writing µ̂N
s = 1

N

∑N
j=1 δxj

s
, update the particles according to

xi
t = xi

0 −

∑t−1
s=1 Pµ̂N

s
∇ log

(
µ̂N
s

π

)
(xi

s)

t

×
(
wi

0 − 1
L

∑t−1
s=1⟨Pµ̂N

s
∇ log

(
µ̂N
s

π

)
(xi

s), x
i
s − xi

0⟩
) .

5. Numerical Experiments
SVGD Coin SVGD SVGD Coin SVGD SVGD Coin SVGD

SVGD Coin SVGD SVGD Coin SVGD SVGD Coin SVGD

Fig 1. Toy Examples. Samples generated by Coin SVGD and SVGD.

0 200 400 600 800 1000
Iterations

0.0
0.5
1.0
1.5
2.0
2.5
3.0

KS
D

SVGD (Optimal LR)
SVGD (Small LR)
SVGD (Large LR)
Coin SVGD

0 200 400 600 800 1000
Iterations

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

KS
D

SVGD (Optimal LR)
SVGD (Small LR)
SVGD (Large LR)
Coin SVGD

0 200 400 600 800 1000
Iterations

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

KS
D

SVGD (Optimal LR)
SVGD (Small LR)
SVGD (Large LR)
Coin SVGD

(a) Gaussian (b) Gaussian Mixture (c) Donut

0 200 400 600 800 1000
Iterations

0

1

2

3

4

5

6

KS
D

SVGD (Optimal LR)
SVGD (Small LR)
SVGD (Large LR)
Coin SVGD

0 200 400 600 800 1000
Iterations

0.5

1.0

1.5

2.0

KS
D

SVGD (Optimal LR)
SVGD (Small LR)
SVGD (Large LR)
Coin SVGD

0 200 400 600 800 1000
Iterations

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25

KS
D

SVGD (Optimal LR)
SVGD (Small LR)
SVGD (Large LR)
Coin SVGD

(d) Banana (e) Squiggle (f) Funnel
Fig 2. Toy Examples. KSD vs Iterations for Coin SVGD and SVGD.

10 4 10 3 10 2 10 1

Learning Rate

0.55

0.60

0.65

0.70

0.75

Pr
ed

ict
iv

e
Ac

cu
ra

cy

SVGD
Coin SVGD

0 1000 2000 3000 4000 5000
Iterations

0.50

0.55

0.60

0.65

0.70

0.75

Pr
ed

ict
iv

e
Ac

cu
ra

cy

SVGD (Optimal LR)
SVGD (Small LR)
SVGD (Large LR)
Coin SVGD

Fig 3. Bayesian Logistic Regression. Test accuracy for Coin SVGD and SVGD.

10 9 10 7 10 5 10 3 10 1

Learning Rate

4

6

8

10

12

Te
st

 R
M

SE

SVGD
Coin SVGD

10 9 10 7 10 5 10 3 10 1

Learning Rate

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

Te
st

 R
M

SE

SVGD
Coin SVGD

10 9 10 7 10 5 10 3 10 1

Learning Rate

2

4

6

8

10

12

Te
st

 R
M

SE

SVGD
Coin SVGD

10 9 10 7 10 5 10 3 10 1

Learning Rate

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

 R
M

SE

SVGD
Coin SVGD

(a) Boston (b) Concrete (c) Energy (d) Kin8nm
Fig 4. Bayesian Neural Network. Test RMSE for Coin SVGD and SVGD.

6. References
[1] Q. Liu and D. Wang. Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm. NeurIPS 2016.
[2] A Korba et al. Kernel Stein Discrepancy Descent. ICML 2021.
[3] S. Chewi et al. SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence. NeurIPS 2020.
[4] F. Orabona and D. Pal. Coin Betting and Parameter-Free Online Learning. NeurIPS 2016.

7. Code
Code and more
results available
on GitHub:

