publications

journal articles, conference papers, and preprints.

2024

  1. AISTATS
    Tuning-Free Maximum Likelihood Training of Latent Variable Models via Coin Betting
    Louis SharrockDaniel Dodd, and Christopher Nemeth
    Proceedings of The 27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024), 2024
  2. Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models
    Louis SharrockJack SimonsSong Liu, and Mark Beaumont
    Proceedings of the 41st International Conference on Machine Learning (ICML 2024), 2024
  3. Learning-Rate-Free Stochastic Optimization over Riemannian Manifolds
    Daniel DoddLouis Sharrock, and Christopher Nemeth
    Proceedings of the 41st International Conference on Machine Learning (ICML 2024), 2024
  4. arXiv
    Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows
    Alberto Cabezas, Louis Sharrock, and Christopher Nemeth
    arXiv preprint, 2024

2023

  1. Online Parameter Estimation for the McKean-Vlasov Stochastic Differential Equation
    Stochastic Processes and their Applications, 2023
  2. Two-timescale stochastic gradient descent in continuous time with applications to joint online parameter estimation and optimal sensor placement
    Louis Sharrock, and Nikolas Kantas
    Bernoulli, 2023
  3. Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates
    Louis Sharrock, and Christopher Nemeth
    Proceedings of the 40th International Conference on Machine Learning (ICML 2023), 2023
  4. Learning Rate Free Sampling in Constrained Domains
    Louis SharrockLester Mackey, and Christopher Nemeth
    Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS 2023), 2023

2022

  1. Joint online parameter estimation for the partially observed stochastic advection diffusion equation
    Louis Sharrock, and Nikolas Kantas
    SIAM /ASA Journal on Uncertainty Quantification, 2022
  2. Two-timescale stochastic approximation for bilevel optimisation problems in continuous-time models
    Louis Sharrock
    In ICML 2022 Workshop on Continuous Time Methods for Machine Learning, 2022

2021

  1. Entropy
    F-divergences and cost function locality in generative modelling with quantum circuits
    2021